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Abstract. We derived analytical expressions for the energy of classical Circular Rydberg States (CRS) in
collinear electric (F) and magnetic (B) fields of arbitrary strengths. Previously published explicit expres-
sions for the energy E were given only for the region of a weak electric field F and only in the limits of
B → 0 and B → ∞. We offered formulas for the dependence of the classical ionization threshold Fc(B)
and of the energy at this threshold Ec(B) valid for the magnetic field B of an arbitrary strength. We also
analyzed the stability of the motion by going beyond the CRS. In addition, for two important particular
cases previously studied in the literature — classical CRS in a magnetic field only and classical CRS in an
electric field only — we presented some new results as well.

PACS. 32.60.+i Zeeman and Stark effects – 31.15.-p Calculations and mathematical techniques in atomic
and molecular physics (excluding electron correlation calculations)

1 Introduction

Circular Rydberg States (CRS) of hydrogenlike systems
correspond to |m| = n − 1 � 1, where m and n are mag-
netic and principal quantum numbers, respectively. CRS
have been extensively studied both theoretically and ex-
perimentally for several reasons (see, e.g., [1–4] and refer-
ences therein). First, CRS have long radiative lifetimes
and highly anisotropic collision cross-sections, thus en-
abling experimental works on inhibited spontaneous emis-
sion, cold Rydberg gases etc. [5–7]. Second, classical CRS
correspond to quantal coherent states that are objects of
fundamental importance. Third, a classical description of
CRS serves as the primary term in the quantal method
based on the 1/n-expansion (see, e.g. [8] and references
therein).

In the present paper we focus at analytical classical de-
scription of CRS in collinear electric (F) and magnetic (B)
fields. This subject was previously studied in [8]. However,
in paper [8], explicit expressions for the energy E were
given only for the region of a weak electric field F and
only in the limits of B → 0 and B → ∞. Below we present
expressions for the energy E for arbitrary strengths of the
electric and magnetic fields. Besides, the authors of [8]
presented a dependence of the classical ionization thresh-
old Fc(B) only for the limits B → 0 and B → ∞ and they
did not present at all the dependence of the energy at the
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ionization threshold Ec(B). Below we offer formulas for
Fc(B) and Ec(B) covering the entire range of B.

We note that two important particular cases were also
previously studied analytically: classical CRS in a mag-
netic field only [9] and classical CRS in an electric field
only [9,10]1.

In [9], the dependence of the energy E on the mag-
netic field B was presented, in fact, in a one-parametric
form: {E(u), B(u)}. However, this problem allows a di-
rect (non-parametric) analytical solution E(B) that we
present below. In [9,10], the study of classical CRS in an
electric field was almost complete. Below we complement
it only with a universal plot of a scaled energy versus a
scaled electric field, thus presenting all possible subcases
for this problem in one curve.

We structure our presentation as follows. In Section 2
we introduce scaled variables and the scaled Hamiltonian
for classical CRS in collinear electric and magnetic fields.
In Section 3 we present analytical results for classical CRS
in a magnetic field only. In Section 4 we present analyti-
cal results for classical CRS in an electric field only. Sec-
tions 3 and 4 contain some new results and also serve as
benchmarks facilitating a better physical understanding

1 List of various kinds of numerous works on a hydrogen
atom in a magnetic field (not limited by the analytical classical
description of CRS) can be found, e.g., in books [11,12]. The
book [12] covers also various kinds of works on a hydrogen
atom in an electric field (not limited by the analytical classical
description of CRS).
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of the general case: analytical classical description of CRS
in collinear electric and magnetic fields. The latter is pre-
sented in Section 5. In Section 6 we summarize new results
of this study.

2 Scaled variables and the scaled Hamiltonian

We consider a hydrogenlike system (atom or ion), where
the nucleus of the charge Z is stationary at the origin. The
system is subjected to collinear electric (F) and magnetic
(B) fields. We choose the Oz-axis along the direction of the
electric field F (Fz > 0). The magnetic field can be paral-
lel to F (Bz > 0), or antiparallel to F (Bz < 0), or equal
to zero. We confine ourselves with circular orbits of the
electron (except Appendix, where this assumption is re-
laxed): the orbit, whose plane is perpendicular to Oz, has
a radius ρ and its center is at the Oz-axis at some point z.
In the cylindrical coordinates, by using the atomic units
e = me = 1, the classical Hamilton function (hereafter,
for brevity — Hamiltonian) can be written in the form:

H(ρ, z) = M2/(2ρ2)−Z/(ρ2+z2)1/2+Fz+ΩM+Ω2ρ2/2,

Ω ≡ B/(2c). (1)

Here M = const. is the z-component of the angular
momentum, Ω is the Larmor frequency. A practical for-
mula for the Larmor frequency reads: Ω(s−1) ≈ 8.794 ×
106B(G).

We introduce the following scaled quantities:

u ≡ ρZ/M2, w ≡ zZ/M2, f ≡ FM4/Z3,

ω ≡ ΩM3/Z2, ε ≡ EM2/Z2, (2)

where E is the energy. In the scaled variables, we get
the following expression for the scaled Hamiltonian h ≡
HM2/Z2:

h(u,w) = 1/(2u2)−1/(u2+w2)1/2+fw+ω+ω2u2/2. (3)

Below we study, first of all, two important particular cases
where either the electric field is zero or the magnetic field
is zero. Then we analyze the general case represented by
the scaled Hamiltonian from equation (3).

3 Classical circular Rydberg states
in a magnetic field of an arbitrary strength

In this purely “magnetic” case, the scaled Hamiltonian
simplifies as follows:

hm(u,w) = 1/(2u2) − 1/(u2 + w2)1/2 + ω + ω2u2/2. (4)

The conditions of the dynamic equilibrium are:

∂hm/∂u = −1/u3 + u/(u2 + w2)3/2 + ω2u = 0, (5)

∂hm/∂w = w/(u2 + w2)3/2 = 0. (6)

Fig. 1. Dependence of the scaled radius of the orbit ρZ/M2

on the scaled magnetic field ΩM3/Z2 at the absence of the
electric field (Ω is the Larmor frequency).

Therefore, w = 0 and from equation (5) we get:

ω2u4 + u− 1 = 0. (7)

By changing the variable

s ≡ u|ω|2/3, (8)

we transform equation (7) into:

s4 + s− |ω|2/3 = 0. (9)

By solving equation (9) analytically and using the rela-
tion (8), we obtain the following equilibrium value of u:

u = g(|ω|2/3)/|ω|2/3, (10)

where

g(x) ≡
{
2/[j(x)]1/2 − j(x)

}1/2

/2 − [j(x)]1/2/2, (11)

j(x) ≡
{
1/2 +

[
3

(
27 + 256x3

)]1/2
/18

}1/3

− (4x/3)/
{
1/2 +

[
3

(
27 + 256x3

)]1/2
/18

}1/3

.

(12)

Figure 1 shows the dependence u(ω). It is seen that the
larger the magnetic field, the more it compresses the orbit.

Substituting w = 0 and u from equation (10) into
equation (4), we obtain the following result for the de-
pendence of the scaled energy εm on the scaled magnetic
field ω:

εm = |ω|4/3/

{
2

[
g

(
|ω|2/3

)]2
}
− |ω|2/3/g

(
|ω|2/3

)

+ ω + |ω|2/3
[
g

(
|ω|2/3

)]2

/2. (13)

We note that in [9] the corresponding result was not ob-
tained in the direct form, like equation (13), but only in
an indirect, parametric form.
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Fig. 2. Dependence of the scaled energy EM2/Z2 on the scaled
magnetic field ΩM3/Z2 at the absence of the electric field: the
solid line shows our result; the dashed line represents the corre-
sponding quantal result by Braun [12] valid only for relatively
small magnetic fields.

It is instructive to compare our classical result for εm

with the corresponding quantal result by Braun [13]. For
CRS, i.e. |m| = n− 1, his result is as follows:

εm,B ≈ −1/2 + ω + ω2/2 ± (2N± + 1)ω2/n;

N± = 0, 1, 2, . . .; N± � n. (14)

On the one hand, the quantal result includes a “fine struc-
ture”, which is absent in our classical result (13): it is the
last term in equation (14), which is much smaller than
the previous term since N± � n. On the other hand, the
quantal result is valid only for small values of the scaled
magnetic field |ω| � 1, while our classical result is valid for
arbitrary values of the magnetic field, including the strong
field region. The quantal small-field result by Braun [13]
corresponds only to the first three terms of the Taylor ex-
pansion of εm from equation (13) and does not reproduce
higher order terms.

Figure 2 shows the dependence εm(ω) by a solid line.
The difference in the shape of this curve between the re-
gions ω > 0 and ω < 0 is due to the third (paramag-
netic) term in equation (13). Physically, the region ω > 0
corresponds to a positive projection of the angular mo-
mentum M on the magnetic field B, while the region
ω < 0 corresponds to a negative projection of M on B.
The dashed curve in Figure 2 represents the correspond-
ing quantal result by Braun [13] (without the small “fine
structure” term). It is seen that the quantal result be-
comes less and less accurate with the increase of |ω|.

The plots in Figures 1 and 2 are universal: due to the
employment of the scaled quantities, they present the re-
sults for the radius of the orbit ρ at the equilibrium and
for the energy E for all possible sets of M , Z, and B.

4 Classical circular Rydberg states
in an electric field of an arbitrary strength

In this purely “electric” case, the scaled Hamiltonian from
equation (3) simplifies as follows:

he(u,w) = 1/
(
2u2

) − 1/
(
u2 + w2

)1/2
+ fw. (15)

Fig. 3. Dependence of the scaled energy EM2/Z2 (the lower
curve) and of the scaled electric field FM4/Z3 (the upper
curve) on the scaled radius of the orbit ρZ/M2 at the absence
of the magnetic field.

The conditions of the dynamic equilibrium are:

∂he/∂u = −1/u3 + u/
(
u2 + w2

)3/2
= 0, (16)

∂he/∂w = w/
(
u2 + w2

)3/2
+ f = 0. (17)

From equation (16) we find the following relation between
the equilibrium values of w and u:

w(u) = −u
(
u2/3 − 1

)1/2

. (18)

Using equations (17, 18), we express the scaled electric
field f via the scaled radius of the orbit u:

f(u) =
(
u2/3 − 1

)1/2

/u3. (19)

Substituting w(u) and f(u) from equations (18, 19) into
equation (15), we obtain the following result for the de-
pendence of the scaled energy εe on the scaled radius of
the orbit u:

εe(u) = 3/(2u2) − 2/u4/3. (20)

Equations (19, 20) represent the dependence of the scaled
energy εe on the scaled electric field f in the one-
parametric form {εe(u), f(u)}.

Figure 3 shows the dependencies εe(u) and f(u) —
the lower and upper curves, respectively. It is seen that
both εe(u) and f(u) have an extremum. From equations
dεe/du = 0 and df/du = 0 it is easy to find, that both
εe(u) and f(u) reach their extrema at the same point
u0 = (9/8)3/2 ≈ 1.19324, the values of the extrema be-
ing: εe(u0) = −27/35 ≈ −0.526749 and f(u0) = 212/39 ≈
0.208098.

Figure 4 shows the dependence of the scaled energy εe

on the scaled electric field f . It is seen that there exists
a critical value fc such that for each f < fc there are
two equilibrium (classical) states of different energies. At
f = fc the energies of the two equilibrium states become
equal to each other, while for f > fc there is no dynamic
equilibrium at all. It turns out that critical value fc and
the critical energy εec (where the two branches in Fig. 4
undergo a V-shape crossing) corresponds to the extrema
f(u0) and εe(u0), respectively:

fc = 212/39 ≈ 0.208098, εec = −27/35 ≈ −0.526749.
(21)
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Fig. 4. Dependence of the scaled energy EM2/Z2 on the scaled
electric field FM4/Z3 at the absence of the magnetic field.

Physically, as the electric field starts increasing from zero,
the plane of the classical orbit shifts (see Eq. (18)) and the
radius of the orbit starts increasing (see Fig. 3). However,
for each f < fc there are two values of the scaled equilib-
rium radius of the orbit (see Fig. 3) — we denote them
u1 and u2 > u1. A simple analysis shows that u1 and the
lower energy branch in Figure 4 correspond to the stable
equilibrium, while u2 and the upper energy branch in Fig-
ure 4 correspond to the unstable equilibrium2. In other
words, the critical scaled field fc from equation (21) is the
classical ionization threshold.

We note that the critical scaled field fc for CRS from
equation (21) is by a factor of 3.3 greater than the stan-
dard result for “general” Rydberg states fc,G = 1/16 ≈
0.0625 (see, e.g., [16]). Physically this is because the ion-
ization from circular orbits is more difficult to achieve than
from non-circular orbits.

It is also instructive to compare our classical results
for fc and εec with the corresponding quantal results by
Kolosov [17] (based on the previous papers by Damburg
and Kolosov [18–20]) derived in the parabolic quantiza-
tion {n1, n2, m}. For CRS, i.e. for parabolic quantum
numbers {0, 0, n− 1}, his results are as follows:

fc,K = 21/2/
[
3π(0.92)3

] ≈ 0.193,

εec,K = −1/
[
2(0.92)2

] ≈ −0.591. (22)

Thus, Kolosov overestimated εec by over 12% and under-
estimated fc by over 7%. This is because his results were
valid only for a relatively small electric field F and repre-
sented the first term of an expansion in terms of a small
parameter F/(−2E)3/2.

We note that authors of the previous studies of clas-
sical CRS in an electric field [9,10] already obtained the
dependence of εe on f in a one-parametric form (though in
different parameterizations) and derived the critical val-
ues fc and εec. We presented similar results for two rea-
sons. First, while studying classical CRS in collinear elec-
tric and magnetic fields (which is the main focus of the
present work), it is convenient to have in the same paper

2 The situation is similar to the results presented in Ap-
pendix and to other results we obtained in [14,15] for the clas-
sical problem of two Coulomb centers. In the studies [14,15] we
also found that out of the two crossing energy branches, only
the lower branch corresponded to the stable equilibrium, while
the upper branch corresponded to the unstable equilibrium.

— for the comparison — the results for the two important
particular cases: classical CRS in a magnetic field only and
classical CRS in an electric field only. Second, we comple-
mented our analytical results, which are similar to those
from [9,10], by the universal plot of the scaled energy εe

versus the scaled electric field f (Fig. 4), as well as by the
universal plots εe(u) and f(u) showing the dependence of
these physical quantities on the scaled equilibrium radius
of the orbit (Fig. 3). In our view, Figures 3 and 4 reveal
some important details helping to better understand the
physics behind the studied phenomenon. Besides, due to
the employment of the scaled quantities, both Figure 3
and Figure 4 present the results for all possible sets of M ,
Z, and B in one or two universal curves.

5 Classical circular Rydberg states in collinear
electric and magnetic fields of arbitrary
strengths

Now we analyze the general form of the scaled Hamilto-
nian given by equation (3). The conditions of the dynamic
equilibrium are:

∂h/∂u = −1/u3 + u/
(
u2 + w2

)3/2
+ ω2u = 0, (23)

∂h/∂w = w/
(
u2 + w2

)3/2
+ f = 0. (24)

From equation (23) we find the following relation between
the equilibrium values of w and u at any given value of
the scaled magnetic field ω:

w(u, ω) = −u
{[
u/

(
1 − ω2u4

)]2/3 − 1
}1/2

. (25)

Using equations (24, 25), we express the scaled electric
field f via the scaled radius of the orbit u at any given
value of the scaled magnetic field ω:

f(u, ω) = (1/u4 − ω2)2/3
[
1 − u2

(
1/u4 − ω2

)2/3
]1/2

.

(26)
Substituting w(u) and f(u) from equations (25, 26) into
equation (3), we obtain the following result for the depen-
dence of the scaled energy ε on the scaled radius of the
orbit u at any given value of the scaled magnetic field ω:

ε(u, ω) = 3/
(
2u2

)
+ω−ω2u2/2−2

(
1/u4 − ω2

)1/3
. (27)

At any given value of the scaled magnetic field ω, equa-
tions (26, 27) represent the dependence of the scaled en-
ergy ε on the scaled electric field f in the one-parametric
form {ε(u), f(u)}. The allowed range of the scaled radius
of the orbit u is controlled by the scaled magnetic field ω:

g
(
|ω|2/3

)
/|ω|2/3 ≤ u ≤ 1/|ω|1/2, (28)

where g(x) is defined by equation (11).
Figure 5 shows the dependence of the scaled shift w of

the orbital plane versus the scaled radius of the orbit u for
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Fig. 5. Dependence of the scaled shift zZ/M2 of the or-
bital plane versus the scaled radius of the orbit ρZ/M2 for
three different absolute values of the scaled magnetic field
ω ≡ ΩM3/Z2: ω = 0 (the right curve), |ω| = 1 (the middle
curve), and |ω| = 5 (the left curve).

Fig. 6. Dependence of the scaled energy ε ≡ EM2/Z2 on the
scaled electric field f ≡ FM4/Z3 at the scaled magnetic field
ω = 1.

three different absolute values of the scaled magnetic field:
ω = 0 (the right curve), |ω| = 1 (the middle curve), and
|ω| = 5 (the left curve). It is seen that as |ω| increases, the
dependence w(u) becomes steeper. Physically this is due
to the following. The magnetic field decreases the radius of
the orbit, but does not shift the orbital plane. The electric
field increases the radius of the orbit and shifts the orbital
plane. Therefore, for a given radius of the orbit ρ0, as
the magnetic field increases, it takes a larger electric field
to maintain ρ = ρ0. The increased electric field causes a
larger shift of the orbital plane at the same ρ = ρ0.

Figures 6 and 7 show the dependence of the scaled
energy ε on the scaled electric field f for ω = 1 and ω =
−1, respectively. The extrema of the functions ε(u,±1)
and f(u,±1) in equations (26, 27) correspond to the V-
shape crossing of the two energy branches in Figures 6
and 7. From the comparison with Figures 3 and 4 it is
seen that the magnetic field increased the value of the
critical field fc, corresponding to the classical ionization
threshold.

Figures 8 and 9 show the dependence of the scaled
energy ε on the scaled electric field f for ω = 10 and
ω = −10, respectively. The extrema of the functions
ε(u,±10) and f(u,±10) in equations (26, 27) correspond
to the V-shape crossing of the two energy branches in
Figures 8 and 9. From the comparison with Figures 6, 7
it is seen that the relatively large magnetic field further

Fig. 7. Dependence of the scaled energy ε ≡ EM2/Z2 on the
scaled electric field f ≡ FM4/Z3 at the scaled magnetic field
ω = −1.

Fig. 8. Dependence of the scaled energy ε ≡ EM2/Z2 on the
scaled electric field f ≡ FM4/Z3 at the scaled magnetic field
ω = 10.

Fig. 9. Dependence of the scaled energy ε ≡ EM2/Z2 on the
scaled electric field f ≡ FM4/Z3 at the scaled magnetic field
ω = −10.

increased the value of the critical field fc, corresponding
to the classical ionization threshold.

In Figures 6–9, the energy curve in the region ω > 0,
corresponding to parallel electric and magnetic fields, dif-
fers from the energy curve in the region ω < 0, corre-
sponding to antiparallel electric and magnetic fields. The
difference is due to the second (paramagnetic) term in
equation (27). In distinction, the scaled electric field given
by equation (26) is symmetric with respect to the change
of the sign of ω.

Physically, the results of this section combined with
the results presented in Sections 3 and 4 demonstrate the
following. As noted above, the electric field increases the
radius of the orbit and shifts the plane of the orbit. Thus, it
works as a destabilizing factor: as the electric field reaches
some critical value fc, the motion becomes unstable and
the system gets ionized. The magnetic field decreases the
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radius of the orbit. Thus it works as a stabilizing factor:
the greater the magnetic field, the greater the electric field
is required for reaching the classical ionization threshold.
A detailed study of the stability is presented in Appendix.

It would be instructive to compare our classical results
with the corresponding quantal results for CRS. However,
for the case of parallel electric and magnetic fields, while
some quantal results for the energy are available for |m| �
n (see, e.g., [20,21]), there are no explicit results for the
energy of CRS (i.e., for |m| = n − 1 � 1) — to the best
of our knowledge. From [20,21] it is known that for |m| >
n/51/2 � 1, the quantal energy εq(f, ω) in the parallel
fields should have the following general structure

εQ(f, ω) =
∞∑

p,r=0

aprf
pωr, (29)

where apr = 0 if p or r is odd, except a01. If we disregard
terms where p + r ≥ 4, then the effects of the parallel
electric and magnetic fields would simply superpose (as
first mentioned by Bethe [23]). Therefore, in this case we
can complement the “magnetic” quantal result from equa-
tion (14) by the well-known expression for the quadratic
Stark effect (see, e.g., [24]). In this way, for |m| = n−1 � 1
we obtain the following quantal result

εQ(f, ω) ≈ −1/2− [1 + 9/(4n)]f2/2

+ ω + [1 ± 2(2N± + 1)/n]ω2/2;

N± = 0, 1, 2, . . .; N± � n. (30)

On the one hand, the quantal result includes small cor-
rections ∼1/n (the second term in each of the brackets
in Eq. (30)), which would not follow from our classical
result (26, 27). On the other hand, the quantal result is
valid only for small values of both the scaled electric field
|f | � 1 and the scaled magnetic field |ω| � 1, while our
classical result is valid for arbitrary values of both fields,
including the strong field regions.

The quantal small-field result from equation (30) can
be derived from our classical formulas (26, 27) in the fol-
lowing approximation. First, we seek the scaled radius of
the orbit u in the form: u = 1+q(f, ω), where q(f, ω) � 1.
Second, we substitute u = 1+q(f, ω) in equations (26, 27)
and expand their right sides in terms of q and ω2 up to
the first order with respect to either q or ω2. In this way,
from equation (26) we obtain: q(f, ω) ≈ 3f2 − ω2. By
substituting this approximate result for q(f, ω) into (al-
ready expanded) equation (27), we retrieve the quantal
small-field result from equation (30), apart from the small
corrections ∼1/n.

To give a sentiment of the inaccuracy of the quantal
result (30), caused by the disregard of the higher order
terms with respect to f and ω, we use as an example a set
of {f = 1/3, ω = 1/2}. From equation (30) for n� N± we
find εQ(1/3, 1/2) = 5/72 ≈ 0.0695, while our correspond-
ing classical result is ε(1/3, 1/2) ≈ 0.0620. Thus, already
at these relatively small values of f and ω, the quantal re-
sult has an error of about 12%. Obviously, the inaccuracy

of the quantal result would increase with the growth of f
or ω.

Let us now study the classical ionization threshold in
more detail: how the critical value of the scaled electric
field fc and the corresponding critical values of the scaled
energy εc and of the scaled radius of the orbit uc depend
on the scaled magnetic field ω. First, from the equation
∂ε(u, ω)/∂u = 0 we find uc(ω). Then we substitute uc(ω)
into equations (26, 27) and find fc(ω) and εc(ω). As a
result, we find the following.

For the critical value of the scaled radius of the orbit:

uc ≈ (9/8)3/2
(
1 + 312 ω2/219

)
, |ω| � 1;

uc ≈ 0.81622, |ω| = 1;

uc ≈
(
1/|ω|1/2

) [
1 − 1/(54|ω|)1/2

]
, |ω| � 1. (31)

For the critical value of the scaled electric field:

fc ≈ 212/39 + 27ω2/32, |ω| � 1;
fc ≈ 0.55214, |ω| = 1;

fc ≈ 2|ω|/33/2 + 23/2|ω|1/2/27, |ω| � 1. (32)

For the critical value of the scaled energy:

εc ≈ −27/35 + ω + 36ω2/211, |ω| � 1;
εc ≈ 0.76223, |ω| = 1;

εc ≈ 2ω − 25/2|ω|1/2/33/2, ω � 1;

εc ≈ 25/2|ω|1/2/33/2, ω � −1. (33)

Based on equations (32, 33), we developed the following
closed-form expressions for fc and εc valid for arbitrary ω:

fc = 212/39 + 54ω2/[64 − 27(2|ω|)1/2 + 31/281|ω|]; (34)

εc ≈ −27/35 + ω + ω2/(1 + |ω|)
− (25/2/33/2)ω2/(4.1902 + |ω|3/2). (35)

These closed-form expressions for fc and εc reproduce ex-
actly the first two terms of the corresponding expansions
at both |ω| � 1 and |ω| � 1; for any ω they have a relative
inaccuracy of about 3% or less.

Figure 10 shows the dependencies of the εc(ω)
and fc(ω). With respect to the change of the sign of ω,
the function fc(ω) is symmetric, while the function εc(ω)
is asymmetric — due to the second (paramagnetic) term
in equation (35).

We note that the authors of [8] gave explicit expres-
sions for the energy E only for the region of a weak electric
field F and only in the limits of B → 0 and B → ∞. As
for the values of the electric field Fc and of the energy Ec

at the classical ionization threshold, paper [8] presented
Fc(B) only for the limits B → 0 and B → ∞ and did not
present Ec(B) at all.

6 Conclusions

We derived analytical expressions for the energy E of clas-
sical CRS of hydrogenlike systems in collinear electric (F)
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Fig. 10. Dependence of the critical value of the scaled elec-
tric field fc ≡ FcM

4/Z3 at the classical ionization threshold
(symmetric curve) and of the critical value of the scaled energy
εc ≡ EcM

2/Z2 at the classical ionization threshold (asymmet-
ric curve) on the scaled magnetic field ω ≡ ΩM3/Z2.

and magnetic (B) fields of arbitrary strengths. Previously
published explicit expressions for the energy E were given
only for the region of a weak electric field F and only in
the limits of B → 0 and B → ∞ [8].

We offered formulas for the dependence of the classi-
cal ionization threshold Fc(B) and of the energy at this
threshold Ec(B) valid for the magnetic field B of an arbi-
trary strength. Previously published paper [8] presented
Fc(B) only for the limits B → 0 and B → ∞ and did not
present Ec(B) at all.

In addition, for two important particular cases previ-
ously studied in the literature — classical CRS in a mag-
netic field only [9] and classical CRS in an electric field
only [10] — we presented some new results as well. For
classical CRS in a magnetic field of an arbitrary strength
we obtained a direct (non-parametric) analytical solu-
tion E(B). In distinction, in [9], the dependence of the
energy E on the magnetic field B was presented, in fact,
only in a one-parametric form: {E(u), B(u)}. For classical
CRS in an electric field of an arbitrary strength we com-
plemented the results from [10] by a universal plot of a
scaled energy versus a scaled electric field, thus present-
ing all possible subcases for this problem in one curve.

We believe the fundamental importance of our analyt-
ical results is due to the fact that hydrogenlike systems
in external fields were and remain a test-bed for atomic
physics. We also believe that our results (e.g., the new ion-
ization threshold (34)) would have a practical importance
as well: we hope they would motivate experiments on a
magnetic control of the ionization instability of CRS. They
should be especially relevant to such new, rapidly devel-
oping area of experimental research as cold Rydberg plas-
mas [25–27]. Indeed, in plasmas, including cold Rydberg
plasmas, the intrinsic electric microfield causes a phe-
nomenon of “continuum lowering” (see, e.g. [28–30] and
references therein), which significantly affects radiative
properties of these media. Our results could be used as a
theoretical basis for setting up experiments on a magnetic
control of the continuum lowering in cold Rydberg plas-
mas. Another area of the potential importance of our re-
sults is the production of Rydberg states of anti-hydrogen

in strong electric and magnetic fields [31], where the field-
caused ionization is the primary concern.

Appendix: Going beyond the circular states

In this appendix we relax the assumption of circular orbits
of the electron: we consider the dynamics of the oscillatory
motion around equilibrium circular orbits. This general
case still allows an important simplification (due to the
conservation of the z-component of the angular momen-
tum): the z- and ρ-motions can be determined separately
from the ϕ-motion. Then the ϕ-motion can be found from
the ρ-motion as shown below.

In the scaled variables from equation (2), the z- and
ρ-motions correspond to w- and u-motions, respectively.
The scaled Hamiltonian h(u,w) for CRS, given by equa-
tion (3), plays the role of the Scaled Potential Energy
(SPE) for the general type of the motion considered in
this appendix. To emphasize this point, we use below the
notation v(u,w) for the SPE, even though the explicit ex-
pression for v(u,w) is the same as for h(u,w):

v(u,w) = 1/(2u2) − 1/(u2 + w2)1/2 + fw + ω + ω2u2/2.
(A.1)

The equilibrium points (w0, u0) of the SPE can be found
from the equations ∂v/∂u = ∂h/∂u = 0 (compare to
Eqs. (23, 24)). They are interrelated as follows:

w0(u0) = −u0

{[
u0/

(
1 − ω2u4

0

)]2/3 − 1
}1/2

(A.2)

(compare to Eq. (25)). We assign the subscript “zero” to
the equilibrium values of w and v to emphasize the distinc-
tion of the general case considered in this appendix from
CRS analyzed in Section 5. Equation (A.2) determines
a line w0(u0) in the plane (w, v), where the equilibrium
points are located.

Now we expand the SPE v(u,w) in terms of δw and δv,
where

δw ≡ w − w0, δu ≡ u− u0. (A.3)

The expansion has the form:

v ∼= v0 + vww(δw)2/2 + vuu(δu)2/2 + vwu(δw)(δu),
v0 ≡ v(w0, u0). (A.4)

The second derivatives of the SPE in equation (A.4) are

vww ≡ (∂2v/∂w2)0 = (u2
0 − 2w2

0)/(w
2
0 + u2

0)
5/2,

vuu ≡ (∂2v/∂u2)0 = 3/u4
0 + ω2

+ (w2
0 − 2u2

0)/(w
2
0 + u2

0)
5/2,

vwu ≡ (∂2v/∂w∂u)0 = −3w0u0/(w2
0 + u2

0)
5/2. (A.5)

Here the suffix 0 at the derivatives means that after the
differentiation one should set u = u0 and w = w0(u0),
where w0(u0) is given by equation (A.2).
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Since generally vwu ≤ 0, a rotation of the reference
frame is required in order to transform the SPE to so-
called “normal” coordinates, diagonalizing the matrix of
the second derivatives of the SPE [32,33]:

δw′ = δw cosα+ δu sinα, δu′ = −δw sinα+ δu cosα.
(A.6)

It is easy to find that

tan 2α = 2vwu/(vww − vuu)

= 2w0u0/[w2
0 − u2

0 + (1/u4
0 + ω2/3)(w2

0 + u2
0)

5/2].
(A.7)

Then cosα and sinα can be expressed via tan 2α from
equation (A.7) by well-known formulas:

cosα =
{

[1 − (1 + tan2 2α)−1/2]/2
}1/2

,

sinα =
{

[1 + (1 + tan2 2α)−1/2]/2
}1/2

sign(tan 2α).

(A.8)

In the normal coordinates, the SPE takes the form

v ∼= v0 + δw′2 ω2
−/2 + δu′2 ω2

+/2, (A.9)

where

ω±(u0, ω) ≡ 2−1/2
{
g1(u0, ω) ± [g2

1(u0, ω)

+ 4g2(u0, ω)]1/2sign[g0(u0, ω)]
}1/2

. (A.10)

Here

g0(u0, ω) ≡ vww − vuu = −3[1/u4
0 + ω2/3

+ (w2
0 − u2

0)/(w
2
0 + u2

0)
5/2],

g1(u0, ω) ≡ vww + vuu = 3/u4
0 + ω2 − 1/(w2

0 + u2
0)

3/2,

g2(u0, ω) ≡ v2
wu − vwwvuu = 2/(w2

0 + u2
0)

3

− (3/u4
0 + ω2)(u2

0 − 2w2
0)/(w

2
0 + u2

0)
5/2.

(A.11)

We remind again that w0 in above formulas stands for the
function w0(u0) given by equation (A.2).

From equation (A.10) it is seen that both the scaled
frequencies ω+ and ω− are real if

g2(u0, ω) < 0. (A.12)

(We note that the corresponding dimensional frequen-
cies Ω± are related to ω± as follows: ω± = Ω±M3/Z2

— compare to Eq. (2).) Thus, under the condition (A.12),
the SPE has a two-dimensional minimum at the equilib-
rium values of u0 and w0(u0), so that the equilibrium is
stable. Physically, in this case ω+ and ω− are scaled fre-
quencies of small oscillations around the equilibrium in
the directions of the normal coordinates δu′ and δw′, re-
spectively. This situation corresponds to the lower branch
of the scaled energy in Figures 6–9.

Introducing a scaled (dimensionless) time

τ ≡ tZ2/M3, (A.13)

we obtain the final expression for the small oscillations
around the stable equilibrium in the form:

δw(τ) = aw[cos(ω− τ + ψw)] cosα
− au cos(ω+ τ + ψu] sinα,

δu(τ) = aw[cos(ω− τ + ψw)] sinα
+ au cos(ω+ τ + ψu] cosα. (A.14)

Here amplitudes aw, au and phases ψw, ψu are determined
by initial conditions; sinα and cosα are given by equa-
tions (A.7, A.8).

The equation for the ϕ-motion can be written in the
scaled notations as

dϕ/dτ = 1/u2. (A.15)

Substituting in equation (A.15) u(τ) ∼= u0 + δu(τ), where
δu(τ) is given by equation (A.14) and integrating over τ ,
we obtain the solution for the ϕ-motion

ϕ(τ) ∼= τ/u2
0 − 2

{
ω−1
− aw[sin(ω−τ + ψw) − sinψw] sinα

+ ω−1
+ au[sin(ω+τ + ψu) − sinψu)] cosα

}
/u3

0. (A.16)

Equation (A.16) shows that the ϕ-motion is a rotation
about the axis of symmetry (defined by the direction of
the parallel fields) with the scaled frequency 1/u2

0, slightly
modulated by oscillations of the scaled radius of the orbit
u at the frequencies ω+ and ω−. In other words, the motion
of the electron occurs on a conical surface of the averaged
radius u0.

If g2(u0, ω) > 0, the equilibrium is unstable: either ω+

or ω− takes imaginary values. If, say ω− is imaginary, its
absolute value |ω−| is the increment of the instability de-
veloping in the direction of the normal coordinate δw′.
This situation corresponds to the upper branch of the
scaled energy in Figures 6–9.

If g2(u0, ω) = 0, then ω+ and ω− are real and equal
to each other. This situation corresponds to the V-shape
crossing of the upper and lower branches of the scaled
energy in Figures 6–9, that is to the classical ionization
threshold.

Finally we emphasize that equation (A.10) for
ω±(u0, ω) together with equation (26) for f(u0, ω) repre-
sent the analytical dependence of ω± on the scaled mag-
netic field ω and on the scaled electric field f in a one-
parametric form (via u0) for arbitrary strengths of both
fields. We note that the authors of [8] gave explicit expres-
sions for ω± only for the small field region.
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